

Improved plasma ALD of nitrides by substrates biasing

Subtitle of presentation

Shohei Ito OI Japan Service Manager

 V_{p}

FlexAL system equipped with substrate biasing enables extended process capabilities 100

-100

-200

RF substrate biasing can be applied during thin film deposition to increase the ion energy and influence film properties such as refractive index, conductivity, stress, crystallinity, density, ...

Material	TiN	TiN	TaN
Precursor	TiCl ₄	TDMAT	TBTDMT
Co-reactant	N_2/H_2 plasma	N_2/H_2 plasma	H_2 plasma
Deposition temperature	300°C - 550°C	100°C - 350°C	250 [◦] C – 350 °C
Thickness per cycle	~0.35 Å/cycle @ 350 °C	~0.5 Å/cycle @ 200°C	~0.4 Å/cycle @ 300 °C
Thickness uniformity 200 mm	< ±3.5%	< ±3.5%	< ±3.5%
	< 150 μΩcm @ 350 °C	< 300 μΩcm @ >200	< 1000 μΩcm @
Resistivity	< 100 μΩcm @ 550 °C	°C	350 °C
		< 150 μΩcm (RF bias)	< 300 μΩcm (RF bias)

- TiN deposition with low resistivity using both halide precursors (TiCl₄) and also metal-organic precursor (TDMAT).
- TiN and TaN benefit from RF substrate biasing by lower film resistivity.

General recipe for RF substrate biasing

Biasing results TiN

Using biasing generally higher conductivity obtained for conductive nitrides. Allows shorter plasma exposure times and lower deposition temperatures.

- TiN results:
 - Using TDMAT for 200 °C deposition a high conductivity was obtained already at short total plasma time (10s).
 - 20W bias (~100-150 V_{bias}) for 5 s: 109 μΩcm for 33.2 nm thickness

-

Effect of bias on plasma ALD TiN

- Resistivity and film stress can be controlled by tuning substrate biasing power
- Coincidence and possible correlation can be observed between resistivity and film stress
- NbN film deposit with 12W
 RF substrate biasing power
 has biggest film stress and
 lowest resistivity measured

Comparison of Superconductivity with Different NbN Plasma ALD Solutions

- Lower Room temperature (RT) resistivity usually indicates higher critical temperature T_c
- The plasma ALD solution offered by Oxford Instruments (OIPT) shows excellent performance even at low process temperature for NbN deposition

NbN: Resistivity vs deposition temperature